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Persistence in Employment

Suppose we observe the following data (0 = unemployed, 1 = employed):

period 0 period 1 period 2  period 3

agent 1 0 0 0 1
agent 2 1 1 1 0
Serial correlation in (Y, ..., Yir) = 3 a causal effect of Yj;_1) on Y;?

@ State dependence vs. Persistent latent heterogeneity

@ Important implications for the design of labor market programs



How to Distinguish SD from Heterogeneity?

Parametric dynamic binary response models (e.g. Heckman, 1981):
Yie = 1{7Yie—1) + XiB+ AYio + Ai + Vie >0} Vt > 1,

where A; and Vj; are unobservable.
@ Arbitrary functional form restrictions on the distribution of heterogeneity

@ Usually motivated by analytic convenience, rather than economic theory

A nonparametric dynamic potential outcomes model (Torgovitsky, 2019):
Yie = Yie—1yU(1) + (1 = Yie—1)) Ui (0),

where U(0) and Uj(1) represent the potential outcomes.



Temporary Employment

Figure: Temporary employment, % of salary workers, 2015 (OECD)
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The Literature

The papers that examined SD in employment dynamics:

parametric nonparametric

binary outcomes Heckman (1981)  Torgovitsky (2019)

discrete outcomes Magnac (2000) my paper
Prowse (2012)

Contribution

@ The first study that explores whether and to what extent there is SD
among temporary workers, based on the nonparametric framework
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The Model

Observable outcomes Y; € J :={0,1,...,J}
o Yi:= (Yo, Yn,...,Yir) €Y

Unobservable potential outcomes (Ui(0), Ui (1), ..., Ux(J)) € 7

o U(y) = (Un(y),..., Ur(y))
e U = (Y,'o7 U,‘(O), U,'(].), cey U,(J)) cu

Y; is related to (U;(0), Ui(1), ..., Ui(J)) through

J
Y=Y 1{Yieny =y} Ue(y) = Ue(Vie=1)) VY t>1. (1)
y=0



The Model (cont.)

Observable covariates X; := (Xio, Xi1, ..., Xit) € X with |X| < o0
@ Observed heterogeneity:
The dist'n of (U;(0), Ui(1),..., Ui(J))|Xi = x is different for each x € X.
@ Unobserved heterogeneity:
The dist'n of (U;(0), Ui(1), ..., Ui(J))|Xi = x need not be degenerate.



Identification
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Identification

A structure for the model with (1) is a pmf P on U x X.
@ A function P with domain U X X is a pmf iff P takes values in [0, 1], and

> P(ux)=1. (2)

ueU ,xeX

@ letp: P — R% be a function representing restrictions on P.

e P* C P! C P «= identified set C admissible set C set of all possible P



Identification
(o] le}

Identification (cont.)

P € P~ requires that for every y := (yo,y1,...,y7) € Y and x € X,

PlY =y, X =x] = Pp[Y =y, X =x]
—_— —_—

Observable pmf of (Y, X) Probability of an event when (U, X) is distributed
according to P, and Y is determined through (1)

=Pp[Yo =yo, Ue(ye-1) = y: Vt > 1, X = x]

= Z P(u, x), (3)

UEUoeq(y)

| ——
Linear in {P(u,x) | ueU,xeX}

where Uoeq(y) :={u €U | uo = yo, ut(ye—1) = y: V t > 1}


https://docs.google.com/spreadsheets/d/1fawc5Hcdt3rxUWuzArTMydflmzxuNzF9DuzjOPbs4V4/edit?usp=sharing
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Identification (cont.)

Usually interested in a parameter 6 : P — R and its identified set

0" := {9(P) | P € P*}.

Proposition 1 (Torgovitsky, 2019)

Suppose that P is closed and convex, and that 0 is a continuous function of P.
Then, as long as P* is nonempty, the identified set ©* is given by [0F,0}], where

6% := min 6(P) = i 0(P) s.t. p(P) >0, (2), and (3) V
V= o ) s e ez (P) s.t. p(P) >0, (2), and (3) Vy, x,

05 = 0(P) = 0(P) s.t. p(P) >0, (2), and (3) Vy, x.
u T pes (P) {P(u,x)e[O,'Ha|Xu€Z/{,x€X} (P) st p(P) 20, (2), and (3) ¥y, x




Parameters of Interest
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State Dependence

State dependence can be measured by the proportion of agents with

4 I{Zﬂ{ut(y)=j}=J+1}¢1.

J

(] noSDt(P) = PP[Ut(O) = Ut(l) == Ut(J)]

@ SPSD.(P) := Pp[U(0) < U(1) < --- < Us(J)]
("] SNSDt(P) = PP[Ut(O) > Ut(l) > > Ut(—/)]

® PSD;(P) := Pp[Us(0) < Ur(1) < -+ < Us(J)] — noSD¢(P) — SPSD(P)
@ NSD¢(P) := Pp[U:(0) > Us(1) > -+ > U(J)] — noSD:(P) — SNSD(P)

@ MSD:(P) := 1 — noSD¢(P) — SPSD;(P) — SNSD¢(P) — PSD:(P) — NSD;(P)


https://docs.google.com/spreadsheets/d/1APGoOAn4BT77juncPE1WYABLX25XbGsMPiQ3qKC9tAU/edit?usp=sharing

tion Parameters of Interest

The Model Identifica
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State Dependence (cont.)

Suppose that Pt = P. Then the sharp identified sets for SPSD;, SNSD,
PSD:, NSD;, and MSD; are given by

|:07ZP[Y1”—1 =Y, Yt :y]:| )

y=0

)

J
[O,ZP[Yt—l =y,Ye=J-y]

y=0
0,1 —P[Yee1=0,Ye=J]—P[Yee1 = J, Y: =0]],
[0, 1 - P[thl = 07 Yt - O] - P[Yf71 = J, Yt - J]]7

and [0, 1], respectively.




Parameters of Interest
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Conditional State Dependence

SPSD;(P) can be modified to be conditional on realizations of Y.
@ SPSD among those with Y; =y :

SPSD(P | y) :=Pp[U:(0) < Ue(1) <--- < Ue(J) | Ye =]
@ SPSD among those with Y; = Yi_1 =y :

SPSD¢(P | yy) : =Pp[Ue(0) < Ue(1) < --- < Ue(J) | Y=y, Yeic1 = y]
_ PelUi()=jforallj#y, Ye=y | Yi1=y]
BYe=y [ Ye1=y]
= Proportion of the observed persistence in y
that is due to SPSD




Identifying Assumptions
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Monotone Treatment Response

Assumption MTR Every P € P satisfies for all t > 1,
SNSD:(P) + NSD(P) =0,
or equivalently,

noSD:(P) + SPSD:(P) + PSD:(P) + MSD:(P) = 1.




0O®00000
Stationarity

Assumption ST (m = 0) For every P € P1, the joint distribution of (U:(0),
U:(1), ..., U:(J)) associated with P is invariant across t > 1.

Assumption ST (m = 1) For every P € P, the joint distribution of (U;—1(0),
U:(0), Ur—1(1), Ue(1), ..., Ue—1(J), Ue(J)) associated with P is invariant
across t > 1.




Identifying Assumptions
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Stationarity (cont.)

Assumption ST(m = 0,0) Let 0 > 0 be a number chosen by the researcher.
Define
Si(u; P) :=Pp[Ue(y) = u(y) for each y € J]

with u := (u(0),...,u(J)). Then for every P € Pt, u e 77!, and t > 1,

(1 =0)Se(u; P) < Sey1(u; P) < (1 + 0)Se(u; P).




Identifying Assumptions
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Weak Stationarity

Assumption WST Every P € PT is such that for all y € J, both Ep[U:(y)]
and Vp[U;(y)] do not depend on t.




Identifying Assumptions
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Diminishing Serial Correlation

Assumption DSC Every P € P’ is such that for each y € J and t > 1,
Corrp(Ue(y), Uets(y)) is decreasing in |s| fors € {1 —¢t,..., T — t}.

If Assumption WST holds, Assumption DSC becomes a linear restriction:

@ Ep[U(y) - Urys(y)] is decreasing in |s| for s € {1 —¢,..., T —t}.



Monotone Instrumental Variables

Assumption MIV Every P € P' is such that for eachy € J and t > 1,

(i) Pp[Us(y) = J | X = x] is weakly increasing or weakly decreasing in one or
more components of x € X', and

(ii) Pp[U:(y) =0 | X = x] is weakly decreasing or weakly increasing in one or
more components of x € X.




Identifying Assumptions
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Monotone Treatment Selection

Assumption MTS Every P € Pt s such that for all veTJ, yi—2 € J, and
t>2,
(i) Pe[Uc(y) = J | Yec1 = ye—1, Yi—2 = yi_2] is weakly increasing in
Yi—1 € J, and
(i) Pe[U:(y) =0 Yi—1 = yt—1, Yi—2 = yr—2] is weakly decreasing in
Yi-1 € J.




Application
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Data and Computation

Data
@ 4,888 obs. from British Household Panel Survey (2005-2009)
@ Each worker’'s employment status is classified into:

0 unemployed
1 temporarily-employed
2 permanently-employed

Computation
@ With J=2and T =3, dim(P) = (J + 1)U*VT+! = 59 049
(w/o covariates)
@ The number of constraints > (J +1)7 42 x dim(P) = 118,179

@ Linear programming solver and symbolic modeling language used
(Gurobi and MPL)
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Results

Table: Estimated identified sets for the BHPS data

MTR 1 1 1 1 1 1 1 1
WSsT 1 2 2 1 2 2
ST (m=0,0 =0.1) 1 2 2 1 2 2
ST (m = 0) 1 2 1 2
ST (m=1) 1 1
DSC 1 1
MIV 1 1
MTS 1 1 1 1 1

spsD 000 000 000 000 .000 000 .000 000  .000  .000
¢ 952 048 943 039 939 218 216 19 195 195

spsD(- | 0) 000 000 000 000 .000 000 000 000  .000  .000

t 347 351 351 351 351 240 240 240 240 240

000 000 000 000 000 000 000 000  .000  .000

SPSD¢(- | 00) 100 100 100 100 100 683 683 683 683  .683

spsDy(- | 1) 000 000 000 000 .00 000 .000 000  .000  .000

t 402 304 304 304 304 314 313 313 313 313

000 000 000 000 .000 000 .000  .000  .000  .000

SPSDe(- |11 100 100 1.00  1.00 100 797 794 794 794 794

spsD(- | 2) 000 000 000 000 .00 000 .000  .000  .000  .000

t 981 079 979 o719 979 215 213 200 .19 197

000 000 000 000 000 000 000 000  .000  .000

SPSDe(- | 22) 100 100 100  1.00 100 220 218 205 203 201

1 = imposed explicitly, 2 = imposed implicitly
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Results (cont.)

Table: 95% confidence regions for the BHPS data

MTR 1 1 1 1 1 1
WST 1 2 2 1 2 2
ST (m=0,0 =0.1) 1 2 2 1 2 2
ST (m = 0) 1 2 1 2
ST (m =1 1 1
MTS 1 1 1
000 .000  .000  .000  .000  .000
SPSDe 956 954 954 405 406 420
000 .000  .000  .000  .000  .000
SPSDe(- 10) 448 448 468 448 448 460
000 .000  .000  .000  .000  .000
SPSD (- | 00) 100 1.00 1.00 1.00 1.00  1.00
000 .000  .000  .000  .000  .000
SPSDe(- 1) .521 .521 .552 .521 .521 .554
000 .000  .000  .000  .000  .000
SPSDe (- 111) 100 1.00 1.00  1.00  1.00  1.00
000 .000  .000  .000  .000  .000
SPSDe(- 12) 909 006  .007 416 416 424
000 .000  .000  .000  .000  .000
SPSDe(- | 22) 100 1.00 1.00  .426  .425 433

1 = imposed explicitly, 2 = imposed implicitly
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Results (cont.)

Table: 95% confidence regions for different subsample sizes (b1 = n2/3, b, = n3/4, by = n4/5)

MTR 1 1 1 1
WST 1 1 1 1
ST(m=0,0=01) 1 1 1 1
MTS 1 1 1 1
b n by by bs
000 .000 .000 .000
SPSD: 196 405 419 437
000 .000 .000 .000
SPSDe(- | 0) 240 448 457 480
000 .000 .000 .000
SPSD,(- | 00) 683 1.00 .700 .702
000 .000 .000 .000
SPSD:(- | 1) 313 521 532 561

000 .000 .000 .000
SPSD.(- | 11) 794 1.00 .996  .983

.000 .000 .000  .000

SPSDe(- 1 2) 200 .416  .428  .445
.000 .000 .000 .000
SPSD:(- | 22) 205 426 436  .454

1 = imposed; explicitly



Conclusion
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Conclusion

Summary
@ Extended the DPO model to allow for multiple outcomes
@ Found little evidence of SD among temp workers in Britain

@ Obtained excessively wide confidence regions

Future research
@ Measure SD among temp workers in other countries
@ Develop or apply a new inferential approach

@ Build a structural model to describe the mechanism



Motivation
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Dynamic Binary Response Models

Yie = 1{7Yje_1) + Xp8 + AYio + Ai + Vie > 0} forall t > 1
Al V;=(Vja,...,Vit) ~ N(O, 1), where I is the T-dim identity matrix.
A2 V; is independent of (Yo, Xi, A;), where X; = (X0, Xi1, - .., XiT)-
A3 A; ~ N(0,03) for some unknown o3.

A4 A; is independent of (X;, Yio).

The MLE of (v, 8, A, 0/2_\) consistent and asymptotically normal if the above is valid

@ Enabling the construction of a consistent estimator of the ATE at time t :

ATE =E [1{y+ X;;f + AYio + A + Vi > 0} — L{X;8 + AYjo + A; + Vie > 0}]



ATE and SD

ATE((P) : = Ep[U:(1) — U(0)]
= (B[U:(0) = 0, Ur(1) = 1] + Pp[Us(0) = 1, Us(1) = 1])
— (Pp[UL(0) = 1, Ur(1) = 0] + Pp[Ue(0) = 1, Ue(1) = 1])
= SPSD¢(P) — SNSD«(P)



Assumption ST and Lower Bounds on SPSD;

Assumption ST and noSD(P) = 1 = stationary distribution of Y

]P]P[Yt = 0] = PP[Ut(O) = Ut(l), Yt = 0] +]P)P[Ut(0) 75 Ut(l), Yt = 0]
— Po[UL(0) = 0, Ur(1) = 0] + Po[Ui(0) # Ur(1), Y = 0]
= Pp[U;-1(0) = 0, Ur—1(1) = 0] + Pp[U:-1(0) # Ut-1(1), Ye—1 = 0]
= Pp[Ye_1 = 0]

@ If Assumption ST holds, non-stationary Y implies noSD:(P) # 1.
@ If Assumptions MTR and ST hold, non-stationary Y implies
noSD:(P) = 1 — SPSD;(P) — SNSD(P) — PSD¢(P) — NSD,(P) — MSD.(P)
=1 — [SPSD.(P) + PSD(P) + MSD:(P)]
# 1.



Motivation Assumptions

ixed Effects

Assumption FE Let U; := (U:(0), U:(1), ..., U:(J)). For every P € PT, there
exists a random variable A such that

PplUs=u| Yic1,..., Y1, Yo,A] = Pp[Ur = u | Yo,A] (almost surely)

for all u € J’** and all t > 2.

Proposition 3 (Torgovitsky, 2019)

Let t > s > 1, and define Y** := (Yo, Ya,..., Ys). If Assumption FE holds,
then for any P € PT, every u € 7' and every y € J°,

Pp[U: = u, YO ' = y] = Pp[Us = u, YO* 1 = y].
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Data Description

Table: Descriptive statistics on (un)employment dynamics in the BHPS

Period t

0 1 2 3
P[Y: = 0] .029 .020 .019 .030
PlY: =1] .030 .026 .022 .020
PlY; = 2] 941 .954 .959 .949
P[Y: # Yi—1] — .061 .046 .052
P[Y: =0] Yi—1 = 0] — .340 .510 547
PlY:=1]| Yio1 =1] — .356 .357 .364
PlY:=2| Yio1=2] — .976 .980 .969

Proportion of individuals with - - -

0 1 2 3 4
periods of Y; =0 .937 .045 .007 .004 .007
periods of Y; =1 .935 .043 .013 .005 .003
periods of Y; = 2 .013 .010 .019 .078 .880
spells of Yy =0 .937 .049 .015 — —
spells of Yy =1 .935 .052 .012 — —
spells of Yy =2 .013 .023 .965 — —

transitions .891 .065 .038 .006 —




Statistical Inference
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Statistical Inference

An inferential approach based on direct sample analogs of 6 and 6}, untenable

@ Would be consistent, with their asymptotic dist’'n highly nonstandard

Strategy (Chernozhukov-Hong-Tamer, 2007)*
@ Transform the characterization of ©* in Prop. 1 into a criterion function

© Use an appropriate sample analog of this criterion function as the basis for
statistical inference

1The following discussion is largely taken from Torgovitsky (2019).



Statistical Inference
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The Criterion Function

W :=supp(Y, X), the joint support of the observable data W := (Y, X)
For each w := (wy, wx) € W C R define

Moequw(W, P) :==1[Y = wy, X = wy] — Z P(u, wy).
UEMoeq(Wy)
The restriction function p partitioned into two components
@ ps: P — R% (stochastic component)

o Assumed that 3m, : W x P — R% for which ps(P) = E[m,(W, P)]
o m, (W, P) : the s component of m,(W, P)

@ pyg:P— R~ (deterministic component)

o Not depending on the distribution of W



Statistical Inference
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The Criterion Function (cont.)

The DPO model can be viewed as a moment inequality model:

P* = {P P} | E[Moequ(W,P)] =0Vwe W,
E[m,s(W,P)] >0Vs=1,...,ds},

where P} .= {P € P | ps(P) > 0}.
Letting A € Ris denote a vector of positive slackness variables,

R* := {(P,\) € P} x R® | E[Moeqw(W,P)]=0VYw e W,
IE[rnp,s(W, P)] _>\5 =0Vs= 1,...,d5}

so that P* is the projection of the first component of R* :

P*={PcP|(P,)\)€R" for some )\ERf’f}.



Statistical Inference
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The Criterion Function (cont.)

Write {m,.s}%, and {Moeqw }wew together as {mj}jl':"1 with dp, = ds + dw.

@ The first d; components of {mj}f;”l correspond to {m, s}% .

A natural choice of population criterion function is

ds dm
QP A) = Z (Em(W, P) = \)* + Z (Em;(W, P))*,

implying (P, \) € R* iff Q(P,\) =0 and (P,\) € P} x R%.

Given an i.i.d. sample {W;}_;, a sample analog of Q(,) would be

de dm
Qu(P,A) = n(mni(P) = X)" + Y nmnj(P),
Jj=1 Jj=ds+1

where m,;(P) :=n"' 30 mj(W;, P) for j=1,....dm.



Statistical Inference
O000@0000

The Criterion Function (cont.)

To define a sample criterion function for a given parameter 6(-), profile Q, :

Qn(t) == inf Qn(P, ),

(PA)EP] (1) xR%
where Pl(t) := {P € Pl | 0(P) = t}.

@n(t) serves as a test statistic for a test of Hyp : t € ©*.

@ Confidence regions for ©* constructed by collecting all t € © for which
Ho is not rejected


https://github.com/ixc147/state.dependence/blob/master/code/v4/sd.v4.inf.mpl

Statistical Inference
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Critical Values

How to approximate the distribution of @,(t) under the null hypothesis?
@ Subsampling
o The distribution of Q,(t) under Ho approximated by that of

Q(t) = inf 2S(P,A),
(P,N)EP] (1) xRE

where ais(P, A) defined analogously to Q,(P, \), but constructed
using a subsample {W*}%_; randomly drawn from {W;}7_; without
replacement.

o The SS test rejects Hy : t € ©* when Q,(t) is larger than the 1 — «
quantile of ais(t) based on B random subsamples.

o A 1— « SS confidence region for ©* is the set of all t for which the
SS test does not reject.

@ The shape restriction approach of Chernozhukov et al. (2015)

o Based on a careful approximation of Q,(t) considering the shape of
the constraint set PI(t) x R% (computationally infeasible here)



Statistical Inference
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Testing for Misspecification

A rejection of the null hypothesis Hy : P* # ()
— 7 an admissible P € P consistent with the observed data.
— Some of the assumptions embodied in PT are false.

— The model is misspecified.

A natural statistic for such a test is

Q, = inf Qn(P, ),

(PA)EP] xR
whose distribution can be approximated as before.

A level o misspecification test rejects Hy : P* # () when Q,, is larger than the
1 — a quantile of the simulated distribution.

@ Such a test always fails to reject when the estimated identified set is
non-empty since @, = 0 in such cases.



The CNS Test

Qi (P, A g, h) == Zfsl( 25(P)+ 07 0 V(Wi P)lg] — hy)°
+ 30 (i (P) 0, V(W P)g])
@ (g, h) are parameters that serve as local deviations to (P, ).

o Vm;(W;, P)lg] := 5 mi(Wi, P+ kg)ln=o
@ Foreachj=1,..., dn,

iP) = i[m,(w,-*, P) — i, (P)]

where {W;*}i_; is a bootstrap sample drawn i.i.d. with replacement from

{Witi



The CNS Test (cont.)

The distribution of @,(t) approximated by that of
Qn(t) = Hmin Qn (P, )\ g, h)
st. (P,A\) € R*(t) and (P,\) + n ?(g, h) € Pl(t) x R%,

where R*(t) := {(P,A) e PI(t) x R | Qu(P,\) < (1+ T)an(t)} , with
T > 0 given
@ The distribution of @,,(t) approximated by redrawing {W;}iL; a large
number (B) of times and computing Q,(t) for each draw

@ The CNS test rejects Ho : t € ©* when Q,(t) is larger than the 1 — o
quantile of these B values of Q,(t).

@ A 1 — a CNS confidence region for ©* is the set of all t for which the
CNS test does not reject.



	The Model
	Identification
	Parameters of Interest
	Identifying Assumptions
	Application
	Conclusion
	Appendix
	Motivation
	Parameters
	Assumptions
	Data
	Statistical Inference


