		Parameters of Interest	Identifying Assumptions		
00	000	000	000000	0000	0

Nonparametric Inference on State Dependence among Temporary Workers

Inhyuk Choi

Pennsylvania State University

December 2019

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

		Parameters of Interest	Identifying Assumptions	Application	
00	000	000	0000000	0000	0
Persist	ence in Er	nployment			

Suppose we observe the following data (0 = unemployed, 1 = employed):

0	1	
1	0	
:	:	۰.
	1 :	1 0 : :

うしゃ ふぼう ふけう ふけい ふしゃ

Serial correlation in $(Y_{i0}, \ldots, Y_{iT}) \Longrightarrow \exists$ a causal effect of $Y_{i(t-1)}$ on Y_{it} ?

- State dependence vs. Persistent latent heterogeneity
- Important implications for the design of labor market programs

The Model Identification Parameters of Interest Identifying Assumptions Application Conclusion 00 000 000 0000000 0000000 0000000 0000000 How to Distinguish SD from Heterogeneity?

Parametric dynamic binary response models (e.g. Heckman, 1981):

$$Y_{it} = \mathbb{1}\left\{\gamma Y_{i(t-1)} + X'_{it}\beta + \lambda Y_{i0} + A_i + V_{it} \ge 0
ight\} \quad \forall t \ge 1,$$

where A_i and V_{it} are unobservable.

- Arbitrary functional form restrictions on the distribution of heterogeneity
- Usually motivated by analytic convenience, rather than economic theory

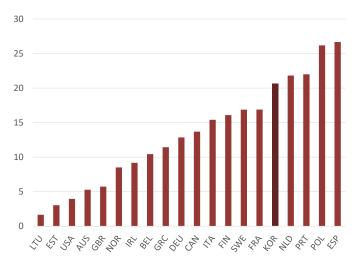
A nonparametric dynamic potential outcomes model (Torgovitsky, 2019):

$$Y_{it} = Y_{i(t-1)}U_{it}(1) + (1 - Y_{i(t-1)})U_{it}(0),$$

where $U_{it}(0)$ and $U_{it}(1)$ represent the potential outcomes.

		Parameters of Interest	Identifying Assumptions	Application	
00	000	000	0000000	0000	0
Tempo	orary Empl	loyment			

Figure: Temporary employment, % of salary workers, 2015 (OECD)



◆□ > ◆□ > ◆三 > ◆三 > 三日 • ● ◆

		Parameters of Interest	Identifying Assumptions		
00	000	000	000000	0000	0
The Li	terature				

The papers that examined SD in employment dynamics:

	parametric	nonparametric
binary outcomes	Heckman (1981)	Torgovitsky (2019)
discrete outcomes	Magnac (2000) Prowse (2012)	my paper

Contribution

 The first study that explores whether and to what extent there is SD among temporary workers, based on the nonparametric framework

The Model	Identification	Parameters of Interest	Identifying Assumptions	Application	Conclusion
00	000	000		0000	O
Outline)				

1 The Model

Parameters of Interest

Identifying Assumptions

The Model		Parameters of Interest	Identifying Assumptions	Application	
0	000	000	0000000	0000	0
The M	odel				

Observable outcomes $Y_{it} \in \mathcal{J} := \{0, 1, \dots, J\}$

•
$$Y_i := (Y_{i0}, Y_{i1}, \ldots, Y_{iT}) \in \mathcal{Y}$$

Unobservable potential outcomes $(U_{it}(0), U_{i1}(1), \dots, U_{it}(J)) \in \mathcal{J}^{J+1}$

•
$$U_i(y) := (U_{i1}(y), \ldots, U_{iT}(y))$$

•
$$U_i := (Y_{i0}, U_i(0), U_i(1), \dots, U_i(J)) \in U$$

 Y_i is related to $(U_i(0), U_i(1), \ldots, U_i(J))$ through

$$Y_{it} = \sum_{y=0}^{J} \mathbb{1} \{ Y_{i(t-1)} = y \} U_{it}(y) = U_{it}(Y_{i(t-1)}) \qquad \forall t \ge 1.$$
 (1)

メロトメ母トメミトメミト 手目 のくぐ

The Model		Parameters of Interest	Identifying Assumptions		
00	000	000	000000	0000	0
The M	odel (cont.)				

Observable covariates $X_i := (X_{i0}, X_{i1}, \dots, X_{iT}) \in \mathcal{X}$ with $|\mathcal{X}| < \infty$

Observed heterogeneity:

The dist'n of $(U_i(0), U_i(1), \dots, U_i(J))|X_i = x$ is different for each $x \in \mathcal{X}$.

• Unobserved heterogeneity:

The dist'n of $(U_i(0), U_i(1), \dots, U_i(J))|X_i = x$ need not be degenerate.

	Identification	Parameters of Interest	Identifying Assumptions	Application	
00	000	000	000000	0000	0
Identifi	cation				

A structure for the model with (1) is a pmf P on $\mathcal{U} \times \mathcal{X}$.

• A function P with domain $\mathcal{U} \times \mathcal{X}$ is a pmf iff P takes values in [0,1], and

$$\sum_{u \in \mathcal{U}, x \in \mathcal{X}} P(u, x) = 1.$$
 (2)

ション・ 日本 ション・ エート ション・

- Let $\rho: \mathcal{P} \to \mathbb{R}^{d_{\rho}}$ be a function representing restrictions on P.
- $\mathcal{P}^{\star} \subseteq \mathcal{P}^{\dagger} \subseteq \mathcal{P} \iff$ identified set \subseteq admissible set \subseteq set of all possible P

	Identification	Parameters of Interest	Identifying Assumptions	Application	
00	000	000	000000	0000	0
Identifi	ication (con	nt.)			

 $P \in \mathcal{P}^{\star}$ requires that for every $y := (y_0, y_1, \dots, y_T) \in \mathcal{Y}$ and $x \in \mathcal{X}$,

$$\underbrace{\mathbb{P}[Y = y, X = x]}_{\text{Observable pmf of }(Y, X)} = \underbrace{\mathbb{P}_{P}[Y = y, X = x]}_{\text{Probability of an event when }(U, X) \text{ is distributed}}_{\text{according to } P, \text{ and } Y \text{ is determined through }(1)} = \mathbb{P}_{P}[Y_{0} = y_{0}, U_{t}(y_{t-1}) = y_{t} \forall t \ge 1, X = x]}_{u \in \mathcal{U}_{\text{oeq}}(y)} P(u, x), \qquad (3)$$
Linear in $\{P(u, x) \mid u \in \mathcal{U}, x \in \mathcal{X}\}$

<□ > < @ > < E > < E > E = 9000

where $\mathcal{U}_{oeq}(y) := \{ u \in \mathcal{U} \mid u_0 = y_0, u_t(y_{t-1}) = y_t \ \forall \ t \geq 1 \}.$

	Identification	Parameters of Interest	Identifying Assumptions	Application	
00	000	000	000000	0000	0
Identifi	cation (cor	nt.)			

Usually interested in a parameter $\theta : \mathcal{P} \to \mathbb{R}$ and its identified set

$$\Theta^{\star} := \{\theta(P) \mid P \in \mathcal{P}^{\star}\}.$$

Proposition 1 (Torgovitsky, 2019)

Suppose that \mathcal{P}^{\dagger} is closed and convex, and that θ is a continuous function of P. Then, as long as \mathcal{P}^{\star} is nonempty, the identified set Θ^{\star} is given by $[\theta_{l}^{\star}, \theta_{u}^{\star}]$, where $\theta_{l}^{\star} := \min_{P \in \mathcal{P}^{\star}} \theta(P) = \min_{\{P(u,x) \in [0,1] \mid u \in \mathcal{U}, x \in \mathcal{X}\}} \theta(P)$ s.t. $\rho(P) \ge 0$, (2), and (3) $\forall y, x, \theta$

$$\theta_u^{\star} := \max_{P \in \mathcal{P}^{\star}} \theta(P) = \max_{\substack{\{P(u,x) \in [0,1] \mid u \in \mathcal{U}, x \in \mathcal{X}\}}} \theta(P) \text{ s.t. } \rho(P) \ge 0, (2), \text{ and } (3) \forall y, x.$$

		Parameters of Interest	Identifying Assumptions	Application	
00	000	000	0000000	0000	0
State I	Dependen	се			

State dependence can be measured by the proportion of agents with

$$\sum_{j=0}^J \mathbb{1}\left\{\sum_{y=0}^J \mathbb{1}\left\{U_t(y)=j\right\}=J+1\right\}\neq 1.$$

•
$$noSD_t(P) := \mathbb{P}_P[U_t(0) = U_t(1) = \cdots = U_t(J)]$$

•
$$\operatorname{SPSD}_t(P) := \mathbb{P}_P[U_t(0) < U_t(1) < \cdots < U_t(J)]$$

•
$$SNSD_t(P) := \mathbb{P}_P[U_t(0) > U_t(1) > \cdots > U_t(J)]$$

•
$$\mathsf{PSD}_t(P) := \mathbb{P}_P[U_t(0) \le U_t(1) \le \cdots \le U_t(J)] - \mathsf{noSD}_t(P) - \mathsf{SPSD}_t(P)$$

•
$$\mathsf{NSD}_t(P) := \mathbb{P}_P[U_t(0) \ge U_t(1) \ge \cdots \ge U_t(J)] - \mathsf{noSD}_t(P) - \mathsf{SNSD}_t(P)$$

•
$$MSD_t(P) := 1 - noSD_t(P) - SPSD_t(P) - SNSD_t(P) - PSD_t(P) - NSD_t(P)$$

		Parameters of Interest	Identifying Assumptions	Application	
00	000	000	0000000	0000	0
State I	Dependen	Ce (cont.)			

Proposition 2

Suppose that $\mathcal{P}^{\dagger} = \mathcal{P}$. Then the sharp identified sets for $SPSD_t$, $SNSD_t$, PSD_t , NSD_t , and MSD_t are given by

$$\begin{bmatrix} 0, \sum_{y=0}^{J} \mathbb{P}[Y_{t-1} = y, Y_t = y] \end{bmatrix}, \\ \begin{bmatrix} 0, \sum_{y=0}^{J} \mathbb{P}[Y_{t-1} = y, Y_t = J - y] \end{bmatrix}, \\ \begin{bmatrix} 0, 1 - \mathbb{P}[Y_{t-1} = 0, Y_t = J] - \mathbb{P}[Y_{t-1} = J, Y_t = 0]], \\ \begin{bmatrix} 0, 1 - \mathbb{P}[Y_{t-1} = 0, Y_t = 0] - \mathbb{P}[Y_{t-1} = J, Y_t = J] \end{bmatrix}, \end{bmatrix}$$

and [0,1], respectively.

 $SPSD_t(P)$ can be modified to be conditional on realizations of Y.

• SPSD among those with $Y_t = y$:

$$\mathsf{SPSD}_t(P \mid y) := \mathbb{P}_P[U_t(0) < U_t(1) < \cdots < U_t(J) \mid Y_t = y]$$

$$SPSD_t(P \mid yy) := \mathbb{P}_P[U_t(0) < U_t(1) < \dots < U_t(J) \mid Y_t = y, Y_{t-1} = y]$$
$$= \frac{\mathbb{P}_P[U_t(j) = j \text{ for all } j \neq y, Y_t = y \mid Y_{t-1} = y]}{\mathbb{P}[Y_t = y \mid Y_{t-1} = y]}$$
$$= \text{Proportion of the observed persistence in } y$$

that is due to SPSD

 The Model
 Identifying Assumptions
 Application
 Conclusion

 00
 000
 000
 0000
 0

Monotone Treatment Response

Assumption MTR Every $P \in \mathcal{P}^{\dagger}$ satisfies for all $t \geq 1$,

 $SNSD_t(P) + NSD_t(P) = 0,$

or equivalently,

 $noSD_t(P) + SPSD_t(P) + PSD_t(P) + MSD_t(P) = 1.$

		Parameters of Interest	Identifying Assumptions		
00	000	000	000000	0000	0
Statior	narity				

Assumption ST (m = 0) For every $P \in \mathcal{P}^{\dagger}$, the joint distribution of $(U_t(0), U_t(1), \ldots, U_t(J))$ associated with P is invariant across $t \ge 1$.

Assumption ST (m = 1) For every $P \in \mathcal{P}^{\dagger}$, the joint distribution of $(U_{t-1}(0), U_t(0), U_{t-1}(1), U_t(1), \ldots, U_{t-1}(J), U_t(J))$ associated with P is invariant across $t \ge 1$.

シロト 本理 ト キヨト キヨト ショー

		Parameters of Interest	Identifying Assumptions	Application	
00	000	000	000000	0000	0
Statior	narity (cont.)			

Assumption ST $(m = 0, \sigma)$ Let $\sigma \ge 0$ be a number chosen by the researcher. Define

$$S_t(u; P) := \mathbb{P}_P[U_t(y) = u(y) \text{ for each } y \in \mathcal{J}]$$

with $u := (u(0), \dots, u(J))$. Then for every $P \in \mathcal{P}^{\dagger}$, $u \in \mathcal{J}^{J+1}$, and $t \ge 1$,
 $(1 - \sigma)S_t(u; P) \le S_{t+1}(u; P) \le (1 + \sigma)S_t(u; P).$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

		Parameters of Interest	Identifying Assumptions		
00	000	000	000000	0000	0
Weak	Stationari	ty			

Assumption WST Every $P \in \mathcal{P}^{\dagger}$ is such that for all $y \in \mathcal{J}$, both $\mathbb{E}_{P}[U_{t}(y)]$ and $\mathbb{V}_{P}[U_{t}(y)]$ do not depend on t.

・ロト・日本・ヨト・ヨト 日本 らくの

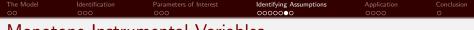
		Parameters of Interest	Identifying Assumptions	Application	
00	000	000	0000000	0000	0
Dimini	shing Seri	al Correlation			

Assumption DSC Every $P \in \mathcal{P}^{\dagger}$ is such that for each $y \in \mathcal{J}$ and $t \ge 1$, $\operatorname{Corr}_{P}(U_{t}(y), U_{t+s}(y))$ is decreasing in |s| for $s \in \{1 - t, \dots, T - t\}$.

If Assumption WST holds, Assumption DSC becomes a linear restriction:

• $\mathbb{E}_{P}[U_{t}(y) \cdot U_{t+s}(y)]$ is decreasing in |s| for $s \in \{1 - t, \dots, T - t\}$.

シロト 本理 ト キヨト キヨト ショー



Monotone Instrumental Variables

Assumption MIV Every $P \in \mathcal{P}^{\dagger}$ is such that for each $y \in \mathcal{J}$ and $t \geq 1$,

- (i) P_P[U_t(y) = J | X = x] is weakly increasing or weakly decreasing in one or more components of x ∈ X, and
- (ii) $\mathbb{P}_{P}[U_{t}(y) = 0 \mid X = x]$ is weakly decreasing or weakly increasing in one or more components of $x \in \mathcal{X}$.

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のへで

The Model 00	Identification 000	Parameters of Interest	Identifying Assumptions	Application 0000	Conclusion O
N /	. T				

Monotone Treatment Selection

Assumption MTS Every $P \in \mathcal{P}^{\dagger}$ is such that for all $y \in \mathcal{J}$, $y_{t-2} \in \mathcal{J}$, and $t \geq 2$,

- (i) $\mathbb{P}_P[U_t(y) = J \mid Y_{t-1} = y_{t-1}, Y_{t-2} = y_{t-2}]$ is weakly increasing in $y_{t-1} \in \mathcal{J}$, and
- (ii) $\mathbb{P}_{P}[U_{t}(y) = 0 | Y_{t-1} = y_{t-1}, Y_{t-2} = y_{t-2}]$ is weakly decreasing in $y_{t-1} \in \mathcal{J}$.

		Parameters of Interest	Identifying Assumptions	Application	Conclusion	
00	000	000	000000	0000	0	
Data a	nd Compi	utation				

Data

- 4,888 obs. from British Household Panel Survey (2005-2009)
- Each worker's employment status is classified into:
 - 0 unemployed
 - 1 temporarily-employed
 - 2 permanently-employed

Computation

- With J = 2 and T = 3, dim $(P) = (J + 1)^{(J+1)T+1} = 59,049$ (w/o covariates)
- The number of constraints $> (J+1)^{T+1} + 2 \times \dim(P) = 118,179$
- Linear programming solver and symbolic modeling language used (Gurobi and MPL)

うして 正則 スポット ベルマ スピット

	Identification	Parameters of Interest 000	Identifying Assumptions	Application	
Results					

Table: Estimated identified sets for the BHPS data

$\label{eq:mtransform} \begin{array}{l} \text{MTR}\\ \text{WST}\\ \text{ST} (m=0, \ \sigma=0.1)\\ \text{ST} (m=0)\\ \text{ST} (m=1)\\ \text{DSC}\\ \text{MIV}\\ \text{MTS} \end{array}$		1	1 1 1	1 2 2 1	1 2 2 1 1 1	1	1	1 1 1	1 2 1 1	1 2 2 1 1 1 1
SPSD _t	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	.952	.948	.943	.939	.939	.218	.216	.196	.195	.195
$\text{SPSD}_t(\cdot \mid 0)$.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	.347	.351	.351	.351	.351	.240	.240	.240	.240	.240
$\text{SPSD}_t(\cdot \mid 00)$.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	1.00	1.00	1.00	1.00	1.00	.683	.683	.683	.683	.683
$SPSD_t(\cdot \mid 1)$.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	.402	.394	.394	.394	.394	.314	.313	.313	.313	.313
$\text{SPSD}_t(\cdot \mid 11)$.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	1.00	1.00	1.00	1.00	1.00	.797	.794	.794	.794	.794
$\text{SPSD}_t(\cdot \mid 2)$.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	.981	.979	.979	.979	.979	.215	.213	.200	.199	.197
$\text{SPSD}_t(\cdot \mid 22)$.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	1.00	1.00	1.00	1.00	1.00	.220	.218	.205	.203	.201

1 = imposed explicitly, 2 = imposed implicitly

		Parameters of Interest	Identifying Assumptions	Application	
00	000	000	0000000	0000	0
Results	(cont.)				

Table: 95% confidence regions for the BHPS data

	1 1 1	1 2 2 1	1 2 2 2 1	1 1 1	1 2 2 1	1 2 2 2 1 1
SPSDt	.000	.000	.000	.000	.000	.000
	.956	.954	.954	.405	.406	.420
$SPSD_t(\cdot \mid 0)$.000	.000	.000	.000	.000	.000
	.448	.448	.468	.448	.448	.460
$\text{SPSD}_t(\cdot \mid 00)$.000	.000	.000	.000	.000	.000
	1.00	1.00	1.00	1.00	1.00	1.00
$SPSD_t(\cdot \mid 1)$.000	.000	.000	.000	.000	.000
	.521	.521	.552	.521	.521	.554
$SPSD_t(\cdot \mid 11)$.000	.000	.000	.000	.000	.000
	1.00	1.00	1.00	1.00	1.00	1.00
$SPSD_t(\cdot \mid 2)$.000	.000	.000	.000	.000	.000
	.999	.996	.997	.416	.416	.424
$SPSD_t(\cdot \mid 22)$.000	.000	.000	.000	.000	.000
	1.00	1.00	1.00	.426	.425	.433

1 = imposed explicitly, 2 = imposed implicitly

		Parameters of Interest	Identifying Assumptions	Application	
00	000	000	000000	0000	0
Results	(cont.)				

Table: 95% confidence regions for different subsample sizes $(b_1 = n^{2/3}, b_2 = n^{3/4}, b_3 = n^{4/5})$

MTR	1	1	1	1
WST	1	1	1	1
ST $(m = 0, \sigma = 0.1)$	1	1	1	1
MTS	1	1	1	1
Ь	п	b_1	b_2	b_3
SPSD,	.000	.000	.000	.000
51 5D _t	.196	.405	.419	.437
	.000	.000	.000	.000
$SPSD_t(\cdot \mid 0)$.240	.448	.457	.480
	.000	.000	.000	.000
$SPSD_t(\cdot \mid 00)$.683	1.00	.700	.702
	.000	.000	.000	.000
$SPSD_t(\cdot \mid 1)$.313	.521	.532	.561
CDCD (11)	.000	.000	.000	.000
$SPSD_t(\cdot \mid 11)$.794	1.00	.996	.983
	.000	.000	.000	.000
$SPSD_t(\cdot \mid 2)$.200	.416	.428	.445
	.000	.000	.000	.000
$SPSD_t(\cdot \mid 22)$.205	.426	.436	.454

		Parameters of Interest	Identifying Assumptions	Application	Conclusion
00	000	000	0000000	0000	•
Conclu	sion				

シロト 本理 ト キヨト キヨト ショー

Summary

- Extended the DPO model to allow for multiple outcomes
- Found little evidence of SD among temp workers in Britain
- Obtained excessively wide confidence regions

Future research

- Measure SD among temp workers in other countries
- Develop or apply a new inferential approach
- Build a structural model to describe the mechanism

Dynamic Binary Response Models

- $\begin{array}{l} Y_{it} = \mathbb{1} \left\{ \gamma Y_{i(t-1)} + X'_{it}\beta + \lambda Y_{i0} + A_i + V_{it} \geq 0 \right\} \text{ for all } t \geq 1 \\ \text{A1} \quad V_i \equiv (V_{i1}, \ldots, V_{iT}) \sim N(0, I_T), \text{ where } I_T \text{ is the T-dim identity matrix.} \end{array}$
 - A2 V_i is independent of (Y_{i0}, X_i, A_i) , where $X_i \equiv (X_{i0}, X_{i1}, \dots, X_{iT})$.
 - A3 $A_i \sim N(0, \sigma_A^2)$ for some unknown σ_A^2 .
 - A4 A_i is independent of (X_i, Y_{i0}) .

The MLE of $(\gamma, \beta, \lambda, \sigma_A^2)$ consistent and asymptotically normal if the above is valid

• Enabling the construction of a consistent estimator of the ATE at time t :

$$\mathsf{ATE}_t \equiv \mathbb{E}\left[\mathbbm{1}\left\{\gamma + X'_{it}\beta + \lambda Y_{i0} + A_i + V_{it} \ge 0\right\} - \mathbbm{1}\left\{X'_{it}\beta + \lambda Y_{i0} + A_i + V_{it} \ge 0\right\}\right]$$

$$\begin{aligned} \mathsf{ATE}_t(P) &:= \mathbb{E}_P[U_t(1) - U_t(0)] \\ &= (\mathbb{P}_P[U_t(0) = 0, U_t(1) = 1] + \mathbb{P}_P[U_t(0) = 1, U_t(1) = 1]) \\ &- (\mathbb{P}_P[U_t(0) = 1, U_t(1) = 0] + \mathbb{P}_P[U_t(0) = 1, U_t(1) = 1]) \\ &= \mathsf{SPSD}_t(P) - \mathsf{SNSD}_t(P) \end{aligned}$$

Assumption ST and $noSD_t(P) = 1 \implies$ stationary distribution of Y

$$\begin{split} \mathbb{P}_{P}[Y_{t} = 0] &= \mathbb{P}_{P}[U_{t}(0) = U_{t}(1), Y_{t} = 0] + \mathbb{P}_{P}[U_{t}(0) \neq U_{t}(1), Y_{t} = 0] \\ &= \mathbb{P}_{P}[U_{t}(0) = 0, U_{t}(1) = 0] + \mathbb{P}_{P}[U_{t}(0) \neq U_{t}(1), Y_{t} = 0] \\ &= \mathbb{P}_{P}[U_{t-1}(0) = 0, U_{t-1}(1) = 0] + \mathbb{P}_{P}[U_{t-1}(0) \neq U_{t-1}(1), Y_{t-1} = 0] \\ &= \mathbb{P}_{P}[Y_{t-1} = 0] \end{split}$$

- If Assumption ST holds, non-stationary Y implies $noSD_t(P) \neq 1$.
- If Assumptions MTR and ST hold, non-stationary Y implies

$$noSD_t(P) = 1 - SPSD_t(P) - SNSD_t(P) - PSD_t(P) - NSD_t(P) - MSD_t(P)$$

= 1 - [SPSD_t(P) + PSD_t(P) + MSD_t(P)]
\$\neq 1.\$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ���

		Assumptions		
0	0	00	0	000000000
Fixed Effects	5			

Assumption FE Let $U_t := (U_t(0), U_t(1), \dots, U_t(J))$. For every $P \in \mathcal{P}^{\dagger}$, there exists a random variable A such that

$$\mathbb{P}_P[U_t = u \mid Y_{t-1}, \dots, Y_1, Y_0, A] = \mathbb{P}_P[U_1 = u \mid Y_0, A] \quad (almost \ surly)$$

for all $u \in \mathcal{J}^{J+1}$ and all $t \geq 2$.

Proposition 3 (Torgovitsky, 2019)

Let $t > s \ge 1$, and define $Y^{0,s} := (Y_0, Y_1, \dots, Y_s)$. If Assumption FE holds, then for any $P \in \mathcal{P}^{\dagger}$, every $u \in \mathcal{J}^{J+1}$ and every $y \in \mathcal{J}^s$,

$$\mathbb{P}_{P}[U_{t} = u, Y^{0,s-1} = y] = \mathbb{P}_{P}[U_{s} = u, Y^{0,s-1} = y].$$

▲ロト ▲周ト ▲ヨト ▲ヨト 三回 のへで

			Data	
0	0	00	•	00000000
Data Des	scription			

Table: Descriptive statistics on (un)employment dynamics in the BHPS

	Period <i>t</i> 0	1	2	3	
$\mathbb{P}[Y_t = 0]$.029	.020	.019	.030	
$\mathbb{P}[Y_t = 1]$.030	.026	.022	.020	
$\mathbb{P}[Y_t = 2]$.941	.954	.959	.949	
$\mathbb{P}[Y_t \neq \dot{Y}_{t-1}]$	_	.061	.046	.052	
$\mathbb{P}[Y_t = 0 \mid Y_{t-1} = 0]$	_	.340	.510	.547	
$\mathbb{P}[Y_t = 1 \mid Y_{t-1} = 1]$	-	.356	.357	.364	
$\mathbb{P}[Y_t = 2 \mid Y_{t-1} = 2]$	-	.976	.980	.969	
	Durantia	C ·	1		
	Proportic	on of individu	als with • • •		
	0 0	n of individu 1	als with · · · 2	3	4
periods of $Y_t = 0$				3	4
periods of $Y_t = 0$ periods of $Y_t = 1$	0	1	2	-	-
	0 .937	.045	2	.004	.007
periods of $Y_t = 1$	0 .937 .935	1 .045 .043	2 .007 .013	.004	.007 .003
periods of $Y_t = 1$ periods of $Y_t = 2$	0 .937 .935 .013	1 .045 .043 .010	2 .007 .013 .019	.004	.007 .003
periods of $Y_t = 1$ periods of $Y_t = 2$ spells of $Y_t = 0$	0 .937 .935 .013 .937	1 .045 .043 .010 .049	2 .007 .013 .019 .015	.004	.007 .003

				Statistical Inference
0	0	00	0	•0000000
Statistica	al Inference			

An inferential approach based on direct sample analogs of θ_l^{\star} and θ_u^{\star} untenable

• Would be consistent, with their asymptotic dist'n highly nonstandard

Strategy (Chernozhukov-Hong-Tamer, 2007)¹

- ${\small \textcircled{0}}$ Transform the characterization of Θ^{\star} in Prop. 1 into a criterion function
- Use an appropriate sample analog of this criterion function as the basis for statistical inference

¹The following discussion is largely taken from Torgovitsky (2019).

 $\mathcal{W} := \operatorname{supp}(Y, X)$, the joint support of the observable data W := (Y, X)

For each $w := (w_y, w_x) \in \mathcal{W} \subset \mathbb{R}^{d_W}$, define

$$m_{\operatorname{oeq},w}(W,P) := \mathbb{1}[Y = w_y, X = w_x] - \sum_{u \in \mathcal{U}_{\operatorname{oeq}}(w_y)} P(u, w_x).$$

The restriction function ρ partitioned into two components

- $\rho_s : \mathcal{P} \to \mathbb{R}^{d_s}$ (stochastic component)
 - Assumed that $\exists m_{\rho} : \mathcal{W} \times \mathcal{P} \to \mathbb{R}^{d_s}$ for which $\rho_s(P) = \mathbb{E}[m_{\rho}(W, P)]$ • $m_{\rho,s}(W, P)$: the s^{th} component of $m_{\rho}(W, P)$

シロト 本理 ト キヨト キヨト ショー

- $\rho_d: \mathcal{P} \to \mathbb{R}^{d_\rho d_s}$ (deterministic component)
 - \circ Not depending on the distribution of W

The DPO model can be viewed as a moment inequality model:

$$\mathcal{P}^{\star} = \{ P \in \mathcal{P}_{d}^{\dagger} \mid \mathbb{E}[m_{\text{oeq},w}(W, P)] = 0 \,\,\forall w \in \mathcal{W}, \\ \mathbb{E}[m_{\rho,s}(W, P)] \ge 0 \,\,\forall s = 1, \dots, d_s \}$$

where $\mathcal{P}_d^{\dagger} := \{ P \in \mathcal{P} \mid \rho_d(P) \geq 0 \}.$

Letting $\lambda \in \mathbb{R}^{d_{\mathrm{s}}}_+$ denote a vector of positive slackness variables,

$$\mathcal{R}^{\star} := \{ (P, \lambda) \in \mathcal{P}_{d}^{\dagger} \times \mathbb{R}_{+}^{d_{s}} \mid \mathbb{E}[m_{\mathsf{oeq}, w}(W, P)] = 0 \ \forall w \in \mathcal{W}, \\ \mathbb{E}[m_{\rho, s}(W, P)] - \lambda_{s} = 0 \ \forall s = 1, \dots, d_{s} \}$$

so that \mathcal{P}^{\star} is the projection of the first component of \mathcal{R}^{\star} :

$$\mathcal{P}^{\star} = \{ P \in \mathcal{P} \mid (P, \lambda) \in \mathcal{R}^{\star} \text{ for some } \lambda \in \mathbb{R}^{d_s}_+ \}.$$

シロト 本理 ト キヨト キヨト ショー

The Criterion Function (cont.)

Write $\{m_{\rho,s}\}_{s=1}^{d_s}$ and $\{m_{\text{oeq},w}\}_{w\in\mathcal{W}}$ together as $\{m_j\}_{j=1}^{d_m}$ with $d_m = d_s + d_W$.

• The first d_s components of $\{m_j\}_{j=1}^{d_m}$ correspond to $\{m_{\rho,s}\}_{s=1}^{d_s}$.

A natural choice of population criterion function is

$$Q(P,\lambda) := \sum_{j=1}^{d_s} \left(\mathbb{E} m_j(W,P) - \lambda_j \right)^2 + \sum_{j=d_s+1}^{d_m} \left(\mathbb{E} m_j(W,P) \right)^2,$$

implying $(P, \lambda) \in \mathcal{R}^{\star}$ iff $Q(P, \lambda) = 0$ and $(P, \lambda) \in \mathcal{P}_{d}^{\dagger} \times \mathbb{R}_{+}^{d_{s}}$.

Given an i.i.d. sample $\{W_i\}_{i=1}^n$, a sample analog of $Q(\cdot, \cdot)$ would be

$$Q_n(P,\lambda) := \sum_{j=1}^{d_s} n(\overline{m}_{n,j}(P) - \lambda_j)^2 + \sum_{j=d_s+1}^{d_m} n\overline{m}_{n,j}(P)^2,$$

where $\overline{m}_{n,j}(P) := n^{-1} \sum_{i=1}^n m_j(W_i, P)$ for $j = 1, \ldots, d_m$.

・ロト・(日)・(日)・(日)・(日)

To define a sample criterion function for a given parameter $\theta(\cdot)$, profile Q_n :

$$\overline{Q}_n(t) := \inf_{(P,\lambda)\in \mathcal{P}_d^{\dagger}(t) imes \mathbb{R}^{d_s}_+} Q_n(P,\lambda),$$

where $\mathcal{P}_d^{\dagger}(t) := \{ P \in \mathcal{P}_d^{\dagger} \mid \theta(P) = t \}.$

 $Q_n(t)$ serves as a test statistic for a test of $H_0: t \in \Theta^*$.

• Confidence regions for Θ^* constructed by collecting all $t \in \Theta$ for which H_0 is not rejected

Motivation	Parameters	Assumptions	Data	Statistical Inference
O	O	00	O	00000€000
Critical Va	lues			

How to approximate the distribution of $\overline{Q}_n(t)$ under the null hypothesis?

- Subsampling
 - The distribution of $\overline{Q}_n(t)$ under H_0 approximated by that of

$$\overline{Q}^{SS}_b(t):=\inf_{\substack{(P,\lambda)\in \mathcal{P}^{\dagger}_d(t) imes \mathbb{R}^{d_s}_+}}Q^{SS}_b(P,\lambda),$$

where $\overline{Q}_{b}^{SS}(P,\lambda)$ defined analogously to $Q_{n}(P,\lambda)$, but constructed using a subsample $\{W_{i}^{\star}\}_{i=1}^{b}$ randomly drawn from $\{W_{i}\}_{i=1}^{n}$ without replacement.

- The SS test rejects H₀: t ∈ Θ^{*} when Q
 _n(t) is larger than the 1 − α quantile of Q
 _b^{SS}(t) based on B random subsamples.
- A 1α SS confidence region for Θ^* is the set of all t for which the SS test does not reject.
- ⁽²⁾ The shape restriction approach of Chernozhukov et al. (2015)
 - Based on a careful approximation of Q_n(t) considering the shape of the constraint set P[†]_d(t) × ℝ^{ds}₊ (computationally infeasible here)

A rejection of the null hypothesis $\textit{H}_{0}:\mathcal{P}^{\star}\neq\emptyset$

- ightarrow \nexists an admissible $P\in \mathcal{P}^{\dagger}$ consistent with the observed data.
- $\rightarrow\,$ Some of the assumptions embodied in \mathcal{P}^{\dagger} are false.
- \rightarrow The model is misspecified.

A natural statistic for such a test is

$$\overline{Q}_n := \inf_{(P,\lambda)\in\mathcal{P}_d^{\dagger}\times\mathbb{R}_+^{d_s}} Q_n(P,\lambda),$$

whose distribution can be approximated as before.

A level α misspecification test rejects $H_0 : \mathcal{P}^* \neq \emptyset$ when \overline{Q}_n is larger than the $1 - \alpha$ quantile of the simulated distribution.

 Such a test always fails to reject when the estimated identified set is non-empty since Q
_n = 0 in such cases.

うして 正則 スポット ベルマ スピット

			Statistical Inference
		00	000000000
The CN	S Test		

$$\begin{aligned} Q_n^{\star}(P,\lambda,g,h) &:= \sum_{j=1}^{d_s} \left(\nu_{n,j}^{\star}(P) + n^{-1} \sum_{i=1}^n \nabla m_i(W_i,P)[g] - h_j \right)^2 \\ &+ \sum_{j=d_s+1}^{d_m} \left(\nu_{n,j}^{\star}(P) + n^{-1} \sum_{i=1}^n \nabla m_j(W_i,P)[g] \right)^2 \end{aligned}$$

• (g, h) are parameters that serve as local deviations to (P, λ) .

•
$$\nabla m_j(W_i, P)[g] := \frac{\partial}{\partial \kappa} m_j(W_i, P + \kappa g)|_{\kappa=0}$$

• For each
$$j = 1, \ldots, d_m$$
,

$$u^{\star}_{n,j}(P) := rac{1}{\sqrt{n}} \sum_{i=1}^n [m_j(W^{\star}_i,P) - \overline{m}_{n,j}(P)],$$

where $\{W_i^{\star}\}_{i=1}^n$ is a bootstrap sample drawn i.i.d. with replacement from $\{W_i\}_{i=1}^n$.

The distribution of $\overline{Q}_n(t)$ approximated by that of

$$egin{aligned} \widetilde{Q}_n(t) &:= \min_{(P,\lambda,g,h)} Q_n^\star(P,\lambda,g,h) \ & ext{ s.t. } (P,\lambda) \in \widehat{\mathcal{R}}^\star(t) ext{ and } (P,\lambda) + n^{-1/2}(g,h) \in \mathcal{P}_d^\dagger(t) imes \mathbb{R}_+^{d_s}, \end{aligned}$$

where $\widehat{\mathcal{R}}^{\star}(t) := \left\{ (P, \lambda) \in \mathcal{P}_{d}^{\dagger}(t) \times \mathbb{R}_{+}^{d_{s}} \mid Q_{n}(P, \lambda) \leq (1 + \tau) \overline{Q}_{n}(t) \right\}$, with $\tau > 0$ given

- The distribution of Q_n(t) approximated by redrawing {W_i^{*}}ⁿ_{i=1} a large number (B) of times and computing Q̃_n(t) for each draw
- The CNS test rejects H₀: t ∈ Θ^{*} when Q
 _n(t) is larger than the 1 − α quantile of these B values of Q
 _n(t).
- A 1 α CNS confidence region for Θ^{*} is the set of all t for which the CNS test does not reject.

うして 正則 スポット ベルマ スピット