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Persistence in Employment

Suppose we observe the following data (0 = unemployed, 1 = employed):

period 0 period 1 period 2 period 3 · · ·

agent 1 0 0 0 1 · · ·
agent 2 1 1 1 0 · · ·

...
...

...
...

...
. . .

Serial correlation in (Yi0, . . . ,YiT ) =⇒ ∃ a causal effect of Yi(t−1) on Yit?

State dependence vs. Persistent latent heterogeneity

Important implications for the design of labor market programs
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How to Distinguish SD from Heterogeneity?

Parametric dynamic binary response models (e.g. Heckman, 1981):

Yit = 1
{
γYi(t−1) + X ′itβ + λYi0 + Ai + Vit ≥ 0

}
∀t ≥ 1,

where Ai and Vit are unobservable.

Arbitrary functional form restrictions on the distribution of heterogeneity

Usually motivated by analytic convenience, rather than economic theory

A nonparametric dynamic potential outcomes model (Torgovitsky, 2019):

Yit = Yi(t−1)Uit(1) + (1− Yi(t−1))Uit(0),

where Uit(0) and Uit(1) represent the potential outcomes.
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Temporary Employment

Figure: Temporary employment, % of salary workers, 2015 (OECD)
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The Literature

The papers that examined SD in employment dynamics:

parametric nonparametric

binary outcomes Heckman (1981) Torgovitsky (2019)

discrete outcomes Magnac (2000) my paper
Prowse (2012)

Contribution

The first study that explores whether and to what extent there is SD
among temporary workers, based on the nonparametric framework
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The Model

Observable outcomes Yit ∈ J := {0, 1, . . . , J}
Yi := (Yi0,Yi1, . . . ,YiT ) ∈ Y

Unobservable potential outcomes (Uit(0),Ui1(1), . . . ,Uit(J)) ∈ J J+1

Ui (y) := (Ui1(y), . . . ,UiT (y))

Ui := (Yi0,Ui (0),Ui (1), . . . ,Ui (J)) ∈ U

Yi is related to (Ui (0),Ui (1), . . . ,Ui (J)) through

Yit =
J∑

y=0

1
{
Yi(t−1) = y

}
Uit(y) = Uit(Yi(t−1)) ∀ t ≥ 1. (1)
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The Model (cont.)

Observable covariates Xi := (Xi0,Xi1, . . . ,XiT ) ∈ X with |X | <∞
Observed heterogeneity:

The dist’n of (Ui (0),Ui (1), . . . ,Ui (J))|Xi = x is different for each x ∈ X .
Unobserved heterogeneity:

The dist’n of (Ui (0),Ui (1), . . . ,Ui (J))|Xi = x need not be degenerate.
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Identification

A structure for the model with (1) is a pmf P on U × X .
A function P with domain U × X is a pmf iff P takes values in [0, 1], and∑

u∈U,x∈X

P(u, x) = 1. (2)

Let ρ : P → Rdρ be a function representing restrictions on P.

P? ⊆ P† ⊆ P ⇐⇒ identified set ⊆ admissible set ⊆ set of all possible P
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Identification (cont.)

P ∈ P? requires that for every y := (y0, y1, . . . , yT ) ∈ Y and x ∈ X ,

P[Y = y ,X = x ]︸ ︷︷ ︸
Observable pmf of (Y , X )

= PP [Y = y ,X = x ]︸ ︷︷ ︸
Probability of an event when (U, X ) is distributed
according to P, and Y is determined through (1)

= PP [Y0 = y0,Ut(yt−1) = yt ∀ t ≥ 1,X = x ]

=
∑

u∈Uoeq(y)

P(u, x),

︸ ︷︷ ︸
Linear in {P(u,x) | u∈U,x∈X}

(3)

where Uoeq(y) := {u ∈ U | u0 = y0, ut(yt−1) = yt ∀ t ≥ 1}.

https://docs.google.com/spreadsheets/d/1fawc5Hcdt3rxUWuzArTMydflmzxuNzF9DuzjOPbs4V4/edit?usp=sharing
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Identification (cont.)

Usually interested in a parameter θ : P → R and its identified set

Θ? := {θ(P) | P ∈ P?}.

Proposition 1 (Torgovitsky, 2019)

Suppose that P† is closed and convex, and that θ is a continuous function of P.
Then, as long as P? is nonempty, the identified set Θ? is given by [θ?l , θ

?
u ], where

θ?l := min
P∈P?

θ(P) = min
{P(u,x)∈[0,1] | u∈U,x∈X}

θ(P) s.t. ρ(P) ≥ 0, (2), and (3) ∀y , x ,

θ?u := max
P∈P?

θ(P) = max
{P(u,x)∈[0,1] | u∈U,x∈X}

θ(P) s.t. ρ(P) ≥ 0, (2), and (3) ∀y , x .
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State Dependence

State dependence can be measured by the proportion of agents with

J∑
j=0

1

{
J∑

y=0

1 {Ut(y) = j} = J + 1

}
6= 1.

noSDt(P) := PP [Ut(0) = Ut(1) = · · · = Ut(J)]

SPSDt(P) := PP [Ut(0) < Ut(1) < · · · < Ut(J)]

SNSDt(P) := PP [Ut(0) > Ut(1) > · · · > Ut(J)]

PSDt(P) := PP [Ut(0) ≤ Ut(1) ≤ · · · ≤ Ut(J)]− noSDt(P)− SPSDt(P)

NSDt(P) := PP [Ut(0) ≥ Ut(1) ≥ · · · ≥ Ut(J)]− noSDt(P)− SNSDt(P)

MSDt(P) := 1− noSDt(P)− SPSDt(P)− SNSDt(P)− PSDt(P)− NSDt(P)

https://docs.google.com/spreadsheets/d/1APGoOAn4BT77juncPE1WYABLX25XbGsMPiQ3qKC9tAU/edit?usp=sharing
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State Dependence (cont.)

Proposition 2

Suppose that P† = P. Then the sharp identified sets for SPSDt , SNSDt ,
PSDt , NSDt , and MSDt are given by[

0,
J∑

y=0

P[Yt−1 = y ,Yt = y ]

]
,

[
0,

J∑
y=0

P[Yt−1 = y ,Yt = J − y ]

]
,

[0, 1− P[Yt−1 = 0,Yt = J]− P[Yt−1 = J,Yt = 0]] ,

[0, 1− P[Yt−1 = 0,Yt = 0]− P[Yt−1 = J,Yt = J]] ,

and [0, 1], respectively.
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Conditional State Dependence

SPSDt(P) can be modified to be conditional on realizations of Y .

SPSD among those with Yt = y :

SPSDt(P | y) := PP [Ut(0) < Ut(1) < · · · < Ut(J) | Yt = y ]

SPSD among those with Yt = Yt−1 = y :

SPSDt(P | yy) : = PP [Ut(0) < Ut(1) < · · · < Ut(J) | Yt = y ,Yt−1 = y ]

=
PP [Ut(j) = j for all j 6= y ,Yt = y | Yt−1 = y ]

P[Yt = y | Yt−1 = y ]

= Proportion of the observed persistence in y

that is due to SPSD
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Monotone Treatment Response

Assumption MTR Every P ∈ P† satisfies for all t ≥ 1,

SNSDt(P) + NSDt(P) = 0,

or equivalently,

noSDt(P) + SPSDt(P) + PSDt(P) + MSDt(P) = 1.
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Stationarity

Assumption ST (m = 0) For every P ∈ P†, the joint distribution of (Ut(0),
Ut(1), . . . , Ut(J)) associated with P is invariant across t ≥ 1.

Assumption ST (m = 1) For every P ∈ P†, the joint distribution of (Ut−1(0),
Ut(0), Ut−1(1), Ut(1), . . . , Ut−1(J), Ut(J)) associated with P is invariant
across t ≥ 1.
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Stationarity (cont.)

Assumption ST(m = 0, σ) Let σ ≥ 0 be a number chosen by the researcher.
Define

St(u;P) := PP [Ut(y) = u(y) for each y ∈ J ]

with u := (u(0), . . . , u(J)) . Then for every P ∈ P†, u ∈ J J+1, and t ≥ 1,

(1− σ)St(u;P) ≤ St+1(u;P) ≤ (1 + σ)St(u;P).
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Weak Stationarity

Assumption WST Every P ∈ P† is such that for all y ∈ J , both EP [Ut(y)]
and VP [Ut(y)] do not depend on t.
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Diminishing Serial Correlation

Assumption DSC Every P ∈ P† is such that for each y ∈ J and t ≥ 1,
CorrP(Ut(y),Ut+s(y)) is decreasing in |s| for s ∈ {1− t, . . . ,T − t}.

If Assumption WST holds, Assumption DSC becomes a linear restriction:

EP [Ut(y) · Ut+s(y)] is decreasing in |s| for s ∈ {1− t, . . . ,T − t}.
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Monotone Instrumental Variables

Assumption MIV Every P ∈ P† is such that for each y ∈ J and t ≥ 1,

(i) PP [Ut(y) = J | X = x ] is weakly increasing or weakly decreasing in one or
more components of x ∈ X , and

(ii) PP [Ut(y) = 0 | X = x ] is weakly decreasing or weakly increasing in one or
more components of x ∈ X .
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Monotone Treatment Selection

Assumption MTS Every P ∈ P† is such that for all y ∈ J , yt−2 ∈ J , and
t ≥ 2,

(i) PP [Ut(y) = J | Yt−1 = yt−1,Yt−2 = yt−2] is weakly increasing in
yt−1 ∈ J , and

(ii) PP [Ut(y) = 0 | Yt−1 = yt−1,Yt−2 = yt−2] is weakly decreasing in
yt−1 ∈ J .
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Data and Computation

Data

4,888 obs. from British Household Panel Survey (2005–2009)

Each worker’s employment status is classified into:

0 unemployed
1 temporarily-employed
2 permanently-employed

Computation

With J = 2 and T = 3, dim(P) = (J + 1)(J+1)T+1 = 59, 049
(w/o covariates)

The number of constraints > (J + 1)T+1 + 2× dim(P) = 118, 179

Linear programming solver and symbolic modeling language used
(Gurobi and MPL)
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Results

Table: Estimated identified sets for the BHPS data

MTR 1 1 1 1 1 1 1 1
WST 1 2 2 1 2 2
ST (m = 0, σ = 0.1) 1 2 2 1 2 2
ST (m = 0) 1 2 1 2
ST (m = 1) 1 1
DSC 1 1
MIV 1 1
MTS 1 1 1 1 1

SPSDt
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.952 .948 .943 .939 .939 .218 .216 .196 .195 .195

SPSDt (· | 0)
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.347 .351 .351 .351 .351 .240 .240 .240 .240 .240

SPSDt (· | 00)
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
1.00 1.00 1.00 1.00 1.00 .683 .683 .683 .683 .683

SPSDt (· | 1)
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.402 .394 .394 .394 .394 .314 .313 .313 .313 .313

SPSDt (· | 11)
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
1.00 1.00 1.00 1.00 1.00 .797 .794 .794 .794 .794

SPSDt (· | 2)
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.981 .979 .979 .979 .979 .215 .213 .200 .199 .197

SPSDt (· | 22)
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
1.00 1.00 1.00 1.00 1.00 .220 .218 .205 .203 .201

1 = imposed explicitly, 2 = imposed implicitly
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Results (cont.)

Table: 95% confidence regions for the BHPS data

MTR 1 1 1 1 1 1
WST 1 2 2 1 2 2
ST (m = 0, σ = 0.1) 1 2 2 1 2 2
ST (m = 0) 1 2 1 2
ST (m = 1) 1 1
MTS 1 1 1

SPSDt
.000 .000 .000 .000 .000 .000
.956 .954 .954 .405 .406 .420

SPSDt (· | 0)
.000 .000 .000 .000 .000 .000
.448 .448 .468 .448 .448 .460

SPSDt (· | 00)
.000 .000 .000 .000 .000 .000
1.00 1.00 1.00 1.00 1.00 1.00

SPSDt (· | 1)
.000 .000 .000 .000 .000 .000
.521 .521 .552 .521 .521 .554

SPSDt (· | 11)
.000 .000 .000 .000 .000 .000
1.00 1.00 1.00 1.00 1.00 1.00

SPSDt (· | 2)
.000 .000 .000 .000 .000 .000
.999 .996 .997 .416 .416 .424

SPSDt (· | 22)
.000 .000 .000 .000 .000 .000
1.00 1.00 1.00 .426 .425 .433

1 = imposed explicitly, 2 = imposed implicitly
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Results (cont.)

Table: 95% confidence regions for different subsample sizes (b1 = n2/3, b2 = n3/4, b3 = n4/5)

MTR 1 1 1 1
WST 1 1 1 1
ST (m = 0, σ = 0.1) 1 1 1 1
MTS 1 1 1 1
b n b1 b2 b3

SPSDt
.000 .000 .000 .000
.196 .405 .419 .437

SPSDt(· | 0)
.000 .000 .000 .000
.240 .448 .457 .480

SPSDt(· | 00)
.000 .000 .000 .000
.683 1.00 .700 .702

SPSDt(· | 1)
.000 .000 .000 .000
.313 .521 .532 .561

SPSDt(· | 11)
.000 .000 .000 .000
.794 1.00 .996 .983

SPSDt(· | 2)
.000 .000 .000 .000
.200 .416 .428 .445

SPSDt(· | 22)
.000 .000 .000 .000
.205 .426 .436 .454

1 = imposed explicitly
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Conclusion

Summary

Extended the DPO model to allow for multiple outcomes

Found little evidence of SD among temp workers in Britain

Obtained excessively wide confidence regions

Future research

Measure SD among temp workers in other countries

Develop or apply a new inferential approach

Build a structural model to describe the mechanism
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Dynamic Binary Response Models

Yit = 1
{
γYi(t−1) + X ′itβ + λYi0 + Ai + Vit ≥ 0

}
for all t ≥ 1

A1 Vi ≡ (Vi1, . . . ,ViT ) ∼ N(0, IT ), where IT is the T-dim identity matrix.

A2 Vi is independent of (Yi0,Xi ,Ai ), where Xi ≡ (Xi0,Xi1, . . . ,XiT ).

A3 Ai ∼ N(0, σ2
A) for some unknown σ2

A.

A4 Ai is independent of (Xi ,Yi0).

The MLE of (γ, β, λ, σ2
A) consistent and asymptotically normal if the above is valid

Enabling the construction of a consistent estimator of the ATE at time t :

ATEt ≡ E
[
1
{
γ + X ′itβ + λYi0 + Ai + Vit ≥ 0

}
− 1

{
X ′itβ + λYi0 + Ai + Vit ≥ 0

}]
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ATE and SD

ATEt(P) : = EP [Ut(1)− Ut(0)]

= (PP [Ut(0) = 0,Ut(1) = 1] + PP [Ut(0) = 1,Ut(1) = 1])

− (PP [Ut(0) = 1,Ut(1) = 0] + PP [Ut(0) = 1,Ut(1) = 1])

= SPSDt(P)− SNSDt(P)
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Assumption ST and Lower Bounds on SPSDt

Assumption ST and noSDt(P) = 1 =⇒ stationary distribution of Y

PP [Yt = 0] = PP [Ut(0) = Ut(1),Yt = 0] + PP [Ut(0) 6= Ut(1),Yt = 0]

= PP [Ut(0) = 0,Ut(1) = 0] + PP [Ut(0) 6= Ut(1),Yt = 0]

= PP [Ut−1(0) = 0,Ut−1(1) = 0] + PP [Ut−1(0) 6= Ut−1(1),Yt−1 = 0]

= PP [Yt−1 = 0]

If Assumption ST holds, non-stationary Y implies noSDt(P) 6= 1.

If Assumptions MTR and ST hold, non-stationary Y implies

noSDt(P) = 1− SPSDt(P)− SNSDt(P)− PSDt(P)− NSDt(P)−MSDt(P)

= 1− [SPSDt(P) + PSDt(P) + MSDt(P)]

6= 1.
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Fixed Effects

Assumption FE Let Ut := (Ut(0),Ut(1), . . . ,Ut(J)). For every P ∈ P†, there
exists a random variable A such that

PP [Ut = u | Yt−1, . . . ,Y1,Y0,A] = PP [U1 = u | Y0,A] (almost surely)

for all u ∈ J J+1 and all t ≥ 2.

Proposition 3 (Torgovitsky, 2019)

Let t > s ≥ 1, and define Y 0,s := (Y0,Y1, . . . ,Ys). If Assumption FE holds,
then for any P ∈ P†, every u ∈ J J+1 and every y ∈ J s ,

PP [Ut = u,Y 0,s−1 = y ] = PP [Us = u,Y 0,s−1 = y ].
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Data Description

Table: Descriptive statistics on (un)employment dynamics in the BHPS

Period t
0 1 2 3

P[Yt = 0] .029 .020 .019 .030
P[Yt = 1] .030 .026 .022 .020
P[Yt = 2] .941 .954 .959 .949
P[Yt 6= Yt−1] − .061 .046 .052
P[Yt = 0 | Yt−1 = 0] − .340 .510 .547
P[Yt = 1 | Yt−1 = 1] − .356 .357 .364
P[Yt = 2 | Yt−1 = 2] − .976 .980 .969

Proportion of individuals with · · ·
0 1 2 3 4

periods of Yt = 0 .937 .045 .007 .004 .007
periods of Yt = 1 .935 .043 .013 .005 .003
periods of Yt = 2 .013 .010 .019 .078 .880
spells of Yt = 0 .937 .049 .015 − −
spells of Yt = 1 .935 .052 .012 − −
spells of Yt = 2 .013 .023 .965 − −
transitions .891 .065 .038 .006 −
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Statistical Inference

An inferential approach based on direct sample analogs of θ?l and θ?u untenable

Would be consistent, with their asymptotic dist’n highly nonstandard

Strategy (Chernozhukov-Hong-Tamer, 2007)1

1 Transform the characterization of Θ? in Prop. 1 into a criterion function

2 Use an appropriate sample analog of this criterion function as the basis for
statistical inference

1The following discussion is largely taken from Torgovitsky (2019).
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The Criterion Function

W := supp(Y ,X ), the joint support of the observable data W := (Y ,X )

For each w := (wy ,wx) ∈ W ⊂ RdW , define

moeq,w (W ,P) := 1[Y = wy ,X = wx ]−
∑

u∈Uoeq(wy )

P(u,wx).

The restriction function ρ partitioned into two components

ρs : P → Rds (stochastic component)

◦ Assumed that ∃mρ :W ×P → Rds for which ρs(P) = E[mρ(W ,P)]
◦ mρ,s(W ,P) : the s th component of mρ(W ,P)

ρd : P → Rdρ−ds (deterministic component)

◦ Not depending on the distribution of W
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The Criterion Function (cont.)

The DPO model can be viewed as a moment inequality model:

P? = {P ∈ P†d | E[moeq,w (W ,P)] = 0 ∀w ∈ W,

E[mρ,s(W ,P)] ≥ 0 ∀s = 1, . . . , ds},

where P†d := {P ∈ P | ρd(P) ≥ 0}.

Letting λ ∈ Rds
+ denote a vector of positive slackness variables,

R? := {(P, λ) ∈ P†d × Rds
+ | E[moeq,w (W ,P)] = 0 ∀w ∈ W,

E[mρ,s(W ,P)]− λs = 0 ∀s = 1, . . . , ds}

so that P? is the projection of the first component of R? :

P? = {P ∈ P | (P, λ) ∈ R? for some λ ∈ Rds
+ }.
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The Criterion Function (cont.)

Write {mρ,s}dss=1 and {moeq,w}w∈W together as {mj}dmj=1 with dm = ds + dW .

The first ds components of {mj}dmj=1 correspond to {mρ,s}dss=1.

A natural choice of population criterion function is

Q(P, λ) :=

ds∑
j=1

(Emj(W ,P)− λj)
2 +

dm∑
j=ds+1

(Emj(W ,P))2 ,

implying (P, λ) ∈ R? iff Q(P, λ) = 0 and (P, λ) ∈ P†d × Rds
+ .

Given an i.i.d. sample {Wi}ni=1, a sample analog of Q(·, ·) would be

Qn(P, λ) :=

ds∑
j=1

n (mn,j(P)− λj)
2 +

dm∑
j=ds+1

nmn,j(P)2,

where mn,j(P) := n−1∑n
i=1 mj(Wi ,P) for j = 1, . . . , dm.
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The Criterion Function (cont.)

To define a sample criterion function for a given parameter θ(·), profile Qn :

Qn(t) := inf
(P,λ)∈P†

d
(t)×Rds

+

Qn(P, λ),

where P†d (t) := {P ∈ P†d | θ(P) = t}.

Qn(t) serves as a test statistic for a test of H0 : t ∈ Θ?.

Confidence regions for Θ? constructed by collecting all t ∈ Θ for which
H0 is not rejected

https://github.com/ixc147/state.dependence/blob/master/code/v4/sd.v4.inf.mpl


Motivation Parameters Assumptions Data Statistical Inference

Critical Values

How to approximate the distribution of Qn(t) under the null hypothesis?

1 Subsampling

The distribution of Qn(t) under H0 approximated by that of

Q
SS
b (t) := inf

(P,λ)∈P†
d

(t)×Rds
+

QSS
b (P, λ),

where Q
SS
b (P, λ) defined analogously to Qn(P, λ), but constructed

using a subsample {W ?
i }bi=1 randomly drawn from {Wi}ni=1 without

replacement.
The SS test rejects H0 : t ∈ Θ? when Qn(t) is larger than the 1− α
quantile of Q

SS
b (t) based on B random subsamples.

A 1− α SS confidence region for Θ? is the set of all t for which the
SS test does not reject.

2 The shape restriction approach of Chernozhukov et al. (2015)

Based on a careful approximation of Qn(t) considering the shape of
the constraint set P†d (t)× Rds

+ (computationally infeasible here)
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Testing for Misspecification

A rejection of the null hypothesis H0 : P? 6= ∅
→ @ an admissible P ∈ P† consistent with the observed data.

→ Some of the assumptions embodied in P† are false.

→ The model is misspecified.

A natural statistic for such a test is

Qn := inf
(P,λ)∈P†

d
×Rds

+

Qn(P, λ),

whose distribution can be approximated as before.

A level α misspecification test rejects H0 : P? 6= ∅ when Qn is larger than the
1− α quantile of the simulated distribution.

Such a test always fails to reject when the estimated identified set is
non-empty since Qn = 0 in such cases.
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The CNS Test

Q?
n (P, λ, g , h) :=

∑ds
j=1

(
ν?n,j(P) + n−1∑n

i=1∇mj(Wi ,P)[g ]− hj
)2

+
∑dm

j=ds+1

(
ν?n,j(P) + n−1∑n

i=1∇mj(Wi ,P)[g ]
)2

(g , h) are parameters that serve as local deviations to (P, λ).

∇mj(Wi ,P)[g ] := ∂
∂κ

mj(Wi ,P + κg)|κ=0

For each j = 1, . . . , dm,

ν?n,j(P) :=
1√
n

n∑
i=1

[mj(W
?
i ,P)−mn,j(P)],

where {W ?
i }ni=1 is a bootstrap sample drawn i.i.d. with replacement from

{Wi}ni=1.
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The CNS Test (cont.)

The distribution of Qn(t) approximated by that of

Q̃n(t) := min
(P,λ,g,h)

Q?
n (P, λ, g , h)

s.t. (P, λ) ∈ R̂?(t) and (P, λ) + n−1/2(g , h) ∈ P†d (t)× Rds
+ ,

where R̂?(t) :=
{

(P, λ) ∈ P†d (t)× Rds
+ | Qn(P, λ) ≤ (1 + τ)Qn(t)

}
, with

τ > 0 given

The distribution of Q̃n(t) approximated by redrawing {W ?
i }ni=1 a large

number (B) of times and computing Q̃n(t) for each draw

The CNS test rejects H0 : t ∈ Θ? when Qn(t) is larger than the 1− α
quantile of these B values of Q̃n(t).

A 1− α CNS confidence region for Θ? is the set of all t for which the
CNS test does not reject.
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